¹IMT Lille Douai, Univ. Lille, IEMN CNRS UMR 8520 ²Universite de Lyon, INSA Lyon, INRIA, CITI Lab ³the School of Mathematical and Computer Sciences, Heriot-Watt University

Introduction

With the increasing scale of wireless networks deployments for the Internet of Things (IoT), a key issue is that the interference statistics are difficult to characterize. In this paper, we study the statistics of interference due to IoT networks that transmit small amounts of data.

A key observation is that sets of active devices change rapidly, which leads to **impulsive noise (interference)** channels. Moreover, these devices operate on multiple partially overlapping resource blocks. As such, we characterize the joint distribution and propose a tractable model based on **copulas**. Using our copula model, we derive closed-form achievable rates. This provides a basis for resource allocation and network design for coexisting IoT networks.

Problem of Interference

The IoT is expected to operate in the ISM bands:

- Low power wide area networks (e.g., SigFox and LoRa) on 863-870 MHz bands.
- ZigBee
- Radio frequency identification (RFID)
- Various devices (e.g., alarms, car keys, etc)

Most devices are uncoordinated!

ETSI and ERC recommendations for ISM bands require that transmitting devices either:

- Listen before talk (listen > 5 s)
- Restrict duty cycles (maximum percentage of on time per hour)

LoRa and SigFox rely on duty cycle access

Increasing interference with an increasing number of devices.

 \Rightarrow

The Standard Interference Modeling Approach

The interference is given by

$$Z = \sum_{i \in \Phi} r_i^{-\eta/2} h_i \lambda$$

Conditioned on Φ and (h_i) , Z is then assumed to be Gaussian. For example, the expected rate is given by

 $\overline{R} = \mathbb{E}_{\Phi,h_i}[\log(1 + \text{SINR})].$

I.e., the devices transmit long packets.

This only makes sense when the set of interfering devices does not change.

Copula-Based Interference Models for IoT Wireless Networks

Ce ZHENG¹, Malcolm EGAN², Laurent CLAVIER¹, Gareth W. PETERS³, Jean-Marie GORCE²

 X_i .

In IoT communication networks, devices send small amounts of data. That is, they send short packets. \Rightarrow Interferers can change during a transmission. \Rightarrow We cannot condition on the locations Φ to obtain a Gaussian model.

where

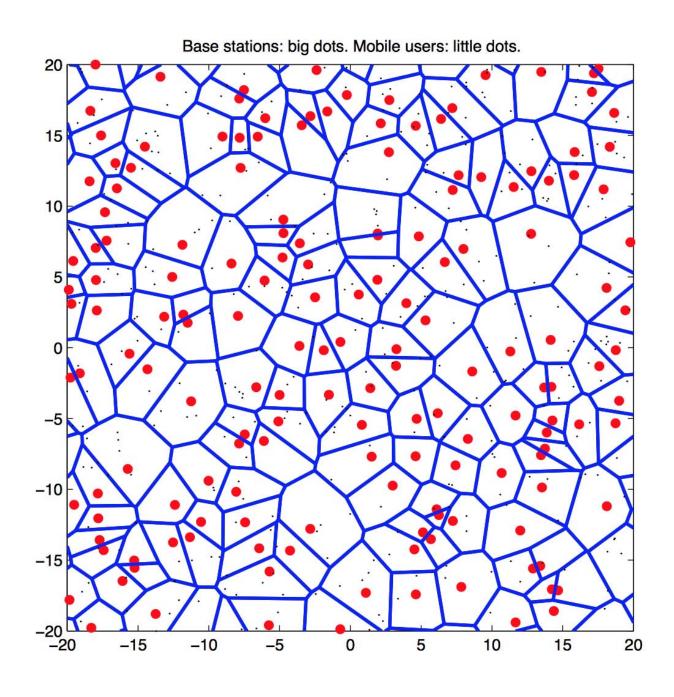


Fig. 1: Poisson Point Process.

New Chanlenges in IoT

This scenario is called **dynamic interference**.

Access Scheme

• Uncoordinated: interfering devices independently transmit on band $k \in \mathcal{B}$ with probability p

Node 1	Node 2	Node 3		Node N
			••••	