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Copula Theory

Question : What is copula?

1. Preliminaries:
X, Y are random variables with distribution functions F(X)

and G(Y), respectively. And their joint distribution function is
H(X,Y). If X and Y are independent, there is a relationship:

     ,H X Y F X G Y (1-1)

What if X and Y are not independent?



Copula Theory

Question : What is copula?

2. Sklar’s Theorem:
If H(X,Y) is joint distributed function with margins F(X),

G(Y), there exists a (Copula) funcion C such that

      , ,H X Y C F X G Y (1-2)

where C is unique if F and G are continuous, otherwise C 
is uniquely determined on Ran 𝐹 × Ran 𝐺 .



Copula Theory

Question : What is copula?

2. Sklar’s Theorem:

      , ,H X Y C F X G Y (1-2)

Let u=F(x), v=G(y). C(u,v) is called copula funcion.

      1 1, ,C u v H F u G v  (1-3)

   , ,C u v P U u V v   (1-4)

C(u,v) is a distributed function with uniform margins.



Copula Theory

Question : What is copula?

3. Multivariate Copula:

      1 1 1,..., ,...,n n nH X X C F X F X (1-5)

where 𝑢1 = 𝐹1 𝑋1 , … , 𝑢𝑛 = 𝐹𝑛 𝑋𝑛

      1 1

1 1 1,..., ,n n nC u u H F u F u  (1-6)

Copulas join or couple multivariate distribution functions
to their one-dimension marginal distribution functions[1] .

[1] Nelsen, R. B. (2007). An introduction to
copulas. Springer Science & Business Media.



Copula Theory

Question : Relation between copula and our research
4. Receiver:

Y S I  (1-7)

where S is a vector containing the repeated sample s,
and I = (𝑖1, … 𝑖𝑛) is the interference vector.

Log likelihood ratio (LLR) will be:
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(1-8)

where ℎ is the joint PDF of 𝐼.

In a SIMO system, the received signal is:



Copula Theory

Question : Relation between copula and our research
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  (1-9)

Recall that 𝐻 𝑋1, … , 𝑋𝑛 = 𝐶(𝐹1 𝑋1 , … , 𝐹𝑛 𝑋𝑛 ). We have

where 𝑐 is the density of copula:
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(1-10)

Dependent component Independent component

4. Receiver:



Copula Theory

Question : Relation between copula and our research

(1-8)

Combining equation (1-9) and (1-8), the LLR becomes:
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  (1-9)

Dependent strcuture Independent structure

4. Receiver:
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Copula Theory

Question : Relation between copula and our research

(1-11)

Combining equation (1-9) and (1-8), the LLR becomes:

Dependent strcuture Independent structure

4. Receiver:
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Measures of Dependece

 

   
,

,
X Y

Cov X Y

Var X Var Y
  (2-1)

1. Invariant under increasing linear transformation
2. Not suitable for alpha-stable, no variance (α<2).

1. Linear Dependence:

Pearson’s Correlation Coefficient:

 + , + , 0i i j j i jX X X Y            ， ， (2-2)



Measures of Dependece

We call C 𝑢1, … , 𝑢𝑛 = ς𝑖=1
𝑛 𝑢𝑖 independent copula.

2. Quadrant Dependence:

If X,Y are independent, then

 ,C u v uv (2-4)

          , = ,C F X G Y H X Y F X G Y (2-3)



Measures of Dependece

we can prove equivalently :

2. Quadrant Dependence:

We call X,Y are positively quadrant dependent (PQD) if

 ,C u v uv (2-6)

     ,P X x Y y P X x P Y y     (2-5)

     ,P X x Y y P X x P Y y     (2-7)

Analogously, we can define the NQD by reversing the 
sense of inequality :



Measures of Dependece

𝑌 is more likely to have small values if the value of 𝑋 is small

2. Quadrant Dependence:

Positively Quadrant Dependent (PQD):

   |P Y y X x P Y y    (2-8)

     ,P X x Y y P X x P Y y     (2-5)

   | |P Y y X x P Y y X      (2-9)

A stronger condition: 𝑃 𝑌 ≤ 𝑦 𝑋 ≤ 𝑥 is nonincreasing.



Measures of Dependece

3. Tail Dependence:
Mainly interested in the dependence among extremal

values, we define lower and upper tail dependence[2]:
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(2-10)

[2] “Skew-t copula for dependence modelling of
impulsive(α-stable) interference.” Communications
(ICC), 2015 IEEE International Conference on. IEEE,
2015..
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Two Families of Copula

(3-1)

The Archimedean copula has the form:

1. Archimedean Familiy:

      1

1 1,..., ...n nC u u u u    

where 𝜑 is the generator of copula and it is a continuous,
strictly decreasing function from [0,1] to [0,∞] and 𝜑(1)=0.
𝜑−1 is the inverse of 𝜑.

According to [1], as long as 𝜑−1 is completely monotonic,
𝐶 is a copula. For bivariate case, 𝜑−1 is convex.



Two Families of Copula

(3-2)

(1) Clayton Copula:

1. Archimedean Familiy:

    1/

1 1,..., max ... 1 ,0n nC u u u u n


 




       

Bivariate case:

(3-3)   1/

, max 1 ,0C u v u v
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Generator:



Two Families of Copula

(3-5)

(2) Gumbel Copula:

1. Archimedean Familiy:

      
1/

1 1,..., exp ln ... lnn nC u u u u


 





      
 

Bivariate case:

(3-6)      
1/

, exp ln lnC u v u v
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   ,  (3-7)

Generator:



Two Families of Copula

Tail dependence:

1. Archimedean Familiy:

Clayton:

(3-8)1/2 ,             0l u

  

1/0,             2 2l u

    (3-9)

Gumbel:



Two Families of Copula
1. Archimedean Familiy:

Figure 1. Claton Copula

Simulations:
1. assume Cauchy Interference
2. Clayton Copula or Gumbel Copula or independent



Two Families of Copula
1. Archimedean Familiy:

Figure 1. Clayton Copula

Simulations:

Figure 1. Cauchy Interference with Indepedence



Two Families of Copula
1. Archimedean Familiy:

Simulations:

Figure 2. Clayton samples

1. Zero upper tail dependence
2. With the increase of 𝜃, it is
more dependent.

Clayton:
1/2 ,             0l u

  



Two Families of Copula
1. Archimedean Familiy:

Simulations:

Figure 3. Cauchy Interference with Clayton

1. Zero upper tail dependence
2. With the increase of 𝜃, it is
more dependent.

Clayton:
1/2 ,             0l u

  



Two Families of Copula
1. Archimedean Familiy:

Simulations:

Figure 4. Gumbel samples

1. Zero lower tail dependence
2. With the increase of 𝜃, it is
more dependent.

Gumbel:
1/0,             2 2l u

   



Two Families of Copula
1. Archimedean Familiy:

Simulations:

Figure 5. Cauchy Interference with Gumbel

1. Zero lower tail dependence
2. With the increase of 𝜃, it is
more dependent.

Gumbel:
1/0,             2 2l u

   



Two Families of Copula

2. Elliptical Familiy:

     11
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(3-10)

where 𝑔𝑛(∙) is the density generator and 𝑐𝑛 is the
normalizing constant:

Elliptical distribution:
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   (3-11)

Gaussian and 𝑡 distribution belong to the Elliptical
distribtuion.



Two Families of Copula

2. Elliptical Familiy:
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(3-12)

Gaussian distribution Ԧ𝑋~𝑁( Ԧ𝜇, ∑) has the density:

(1) Gaussian Copula:

(3-13)

where 𝐹∑
𝑛 is the CDF and 𝐹 is the margin.

zero tail dependence

      1 1

1 1,..., ,...,n

n nC u u F F u F u 



Hence:



Two Families of Copula

2. Elliptical Familiy:
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(3-12)

𝑡 distribution Ԧ𝑋~𝑡𝑣( Ԧ𝜇, ∑) has the density:

(2) 𝑡 Copula:

(3-13)

where 𝑡𝑣,∑
𝑛 is the CDF and 𝑡𝑣

−1 is the margin.

symmetric tail dependence.

      1 1

1 , 1,..., ,...,n

n v v v nC u u t t u t u 



where 𝑣 is the degree of freedom and 𝑛 is the dimension:



Two Families of Copula
2. Elliptical Familiy:

Simulations:
Gaussian copula:

Figure 6. Gaussian copula samples and interference



Two Families of Copula
2. Elliptical Familiy:

Simulations:
t copula:

Figure 7. t copula samples and interference
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Observation

1. Complex Interference:

The interference is composed of real and imaginary
parts:

        
2 1, 1, , , 1, 1, 1, ,( , ,..., , ) , ,..., ,

KZ r i K r K i r i r K iF z z z z C F z F z F z F z (4-2)

2 1, 1, , ,( , ,..., , )K r i K r K iZ z z z z (4-1)

Joint distribution of 𝑍2𝐾 can be expressed as:

In general, the dependence of the pair

𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑘,𝑗 is different with the pair

𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑗,𝑟 or 𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑘,𝑗 .



Observation

1. Complex Interference:

        
2 1, 1, , , 1, 1, 1, ,( , ,..., , ) , ,..., ,

KZ r i K r K i r i r K iF z z z z C F z F z F z F z (4-2)

In general, the dependence of the pair

𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑘,𝑗 is different with the pair

𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑗,𝑟 or 𝐹 𝑧𝑘,𝑟 , 𝐹 𝑧𝑘,𝑗 .

(3-1)

The Archimedean copula has the form:

      1

1 1,..., ...n nC u u u u    



Observation

2. Copula Density:

Figure 8. Samples of α-stable interference

What is the dependence
structure?



Observation

2. Copula Density:

Figure 8. Density of CDF of α-stable interference

There is a dependence.



Observation

2. Copula Density:

Figure 9. Density of t copula Figure 8. Density of CDF of α-stable interference
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My point of view on Copula:

1. It has a bright future since the most common

assumption on the dependence is ‘independent’.

2. Hexagon vs. Stochastic Geometry

Independence vs. Copula Theory


