
Interference Modeling for Wireless IoT Networks

Ce ZHENG

University of Lille, France

November 20, 2022

Ce ZHENG (University of Lille, France) November 20, 2022 1 / 43



Communication for the IoT

In the Internet of Things, huge numbers of devices transmitting to
different access points must coexist.
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The Interference Problem

The IoT is expected to operate in the ISM bands:

Low power wide area networks (e.g., SigFox and LoRa) on 863-870
MHz bands.

ZigBee

Radio frequency identification (RFID)

Various devices (e.g., alarms, car keys, etc)

Most devices are uncoordinated!
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The Interference Problem
ETSI and ERC recommendations for ISM bands require that transmitting
devices either:

Listen before talk (listen > 5 s)

Bluetooth/Zigbee – IEEE 802.15 type devices

Restrict duty cycles (maximum percentage of on time per hour)

LoRa and SigFox rely on duty cycle access

⇒

Increasing interference with an increasing number of devices.
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The Interference Problem

(a) Shopping area. (b) Business area.

Figure 1: Interference experimental results in Aalborg from [Lauridsen, 2017].
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The Interference Problem
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Figure 2: Example of a few interference samples measured in the different areas
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The Standard Interference Modeling Approach [Aalborg
University]

In many networks, device locations are modeled using point processes.

Figure 3: A Poisson spatial field of interferers [Andrews2011].

Ce ZHENG (University of Lille, France) November 20, 2022 7 / 43



Access Scheme
Uncoordinated: interfering devices independently transmit on band
k ∈ B

  

Node 1 Node 2 Node 3 Node N

Figure 4: Caption
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The Standard Interference Modeling Approach

The interference is given by

Z =
∑
i∈Φ

r
−η/2
i hiXi .

Conditioned on Φ and (hi ), Z is then assumed to be Gaussian.

For example, the expected rate is given by

R = EΦ,hi [log(1 + SINR)].

This only makes sense when the set of interfering devices does not
change.

I.e., the devices transmit long packets.

Ce ZHENG (University of Lille, France) November 20, 2022 10 / 43



New Challenges in the IoT

In IoT communication networks, devices send small amounts of data.

That is, they send short packets.

⇒ Interferers can change during a transmission.

⇒ We cannot condition on the locations Φ to obtain a Gaussian model.

Z =
∑
i∈Φ

r
−η/2
i hiXi .

This scenario is called dynamic interference.
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Initial Steps

Question: For each received symbol, what are the statistics of the
interference?

In scenarios where

devices are located according to a Poisson point process

transmission is on a single subcarrier

the interference statistics have been extensively studied
[Middleton1977,Sousa1992,Ilow1998,Yang2003,Pinto2010,Gulati2010].
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Initial Steps

This earlier work has established the interference statistics on a single
subcarrier.

Z =
∑
i∈Φ

r
−η/2
i hiXi .

Suppose that

(i) the point process Φ is homogeneous Poisson;

(ii) (hi ) and (Xi ) are independent

(iii) each hi or Xi is isotropic;

(iv) E[|Re(hiXi )|4/η] <∞.

Then the interference Z is isotropic complex 4/η-stable.

Observation: the interference is non-Gaussian.
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α-Stable Models

A random variable X has a stable distribution if for any positive
numbers A and B, there is a positive number C and a real number D
such that

AX1 + BX2
d
= CX + D,

where X1 and X2 are independent copies of X .

The characteristic function of an α-stable random variable X is given
by

E[e iθX ]

=


exp

{
−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iδθ
}
,

0 < α < 2, α 6= 1
exp

{
−γ|θ|(1 + iβ 2

π (signθ) log |θ|) + iδθ
}
,

α = 1

α – impulsiveness, β – skewness, γ – dispersion, δ – location.
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α-Stable Models

A random variable X has a stable distribution if for any positive
numbers A and B, there is a positive number C and a real number D
such that

AX1 + BX2
d
= CX + D,

where X1 and X2 are independent copies of X .

The characteristic function of a symmetric α-stable random variable
X is given by

E[e iθX ] = {exp {−γα|θ|α} , 0 < α < 2,

α – impulsiveness, γ – dispersion.
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α-Stable Models
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α-Stable Models
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α-Stable Models

Under the Poisson point process model, the interference on a single
subcarrier Z is isotropic complex 4/η-stable.

Z =
∑
i∈Φ

r
−η/2
i hiXi .

This means that
Z = [Re(Z ), Im(Z )]T

d
= A1/2G,

where

A is a skewed α-stable random variable.

G ∼ N (02×1, σ
2I2×2)

Isotropic α-stable random variables are a special case of sub-Gaussian
α-stable random vectors.

These will play an important role later.
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Interference Approximation in Single Band Systems
In practice,

devices cannot be arbitrarily close to the receiver

the network radius is not infinite

rh

rl

Kullback-Leibler Divergence:

D(PX||PY) =

∫
Rd

pX(x) log
pX(x)

pY(x)
dx.
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Interference Approximation in Single Band Systems
In practice,

devices cannot be arbitrarily close to the receiver

the network radius is not infinite

Nevertheless, the α-stable model still forms a good approximation.
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Design Implications

Much of communication system design relies heavily on the Gaussian noise
and interference assumption.

Since the interference model has changed, so does receiver design and
network performance.

For example, detection algorithms [ElGhannudi2010], capacity
characterization [Egan2018,deFreitas2017], channel coding schemes
[Mestrah2018]).

α-stable interference models can significantly change system
design.
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Receiver Design

In receiver design, the key problem is to obtain an estimate of the data x
based on the observation

Y = x + Z .

The optimal detector in the Gaussian interference case is based on
minimizing the Euclidean distance from the observation to the estimate.

When the interference Z is α-stable, then the decision rule
changes.
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Receiver Design

In SIMO system, one transmitting anteena and two receiving antennas,
with BPSK signals (x = ±1), the interference vector is Z = [Z1,Z2].
Suppose Z1 and Z2 are independent symmetric α-stable random variables.

The decision region for BPSK significantly changes (Maximum Likelihood)
[Soret, 2017]
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Towards A More Realistic System Setup
Multi-band scenarios: each device transmits over a subset of
orthogonal frequency bands, B = {1, 2, . . . ,K}

Uncoordinated: interfering devices independently transmit on band
k ∈ B, with probability p > 0
p – proportional to the quantity of data each interfering device seeks
to transmit
Probability on M out of K bands —

(K
M

)
pM(1− p)K−M

Interfering nodes: PPP with pλ on the whole plane — Φ

  

Node 1 Node 2 Node 3 Node N

Figure 5: Caption
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Heavily Loaded Networks: Setup
When all devices transmit on all bands with high probability, the network
is said to be heavily loaded.

In our model, this corresponds to p ≈ 1.

This means that the interference is given by

Zk =
∑
j∈Φ

rj
−η/2hj ,kxj ,k , k = 1, . . . ,K .
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Figure 6: Caption
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Multivariate α-Stable Models

A random vector X = (X1, . . . ,Xd) is a stable random vector in Rd if
for any positive numbers A and B, there is a positive number C and a
vector D ∈ Rd such that

AX(1) + BX(2) d
= CX + D,

where X(1) and X(2) are independent copies of X.

Representation via the characteristic function

ΦX(θ) = E[e iθ·X] = exp

(
−
∫
Sd−1

|θ · s|αdΓ(s)

)
Not all random vectors with α-stable marginals are α-stable.
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Multivariate α-stable Models

∗Sub-Gaussian α-stable distribution:
Z

d
= A1/2(G1, . . . ,Gd),

A ∼ Sα/2((cosπα/4)2/α, 1, 0) is a skewed α-stable random
variable.

G = [G1, . . . ,Gd ]T ∼ N (0, σ2I)
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Heavily Loaded Networks: Interference Characterization

The interference random vector is

Z = [Re(Z1,1), Im(Z1,2)︸ ︷︷ ︸
Band 1

, · · · ,Re(ZK ,1), Im(ZK ,N)︸ ︷︷ ︸
Band K

]T

Theorem 1

Suppose that the network is heavily loaded (p = 1), hj ,kxj ,k is an
isotropic complex random variable for k = 1, · · · ,K, and

E[|Re(hj ,kxj ,k)|4/η|] <∞, k = 1, · · · ,K

Then, Z is sub-Gaussian α-stable∗ with α = 4/η.
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Heavily Loaded Networks: Interference Characterization
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KL divergence between simulated data set and the Sub-Gaussian α-stable model.
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The General Case: Setup

The interference random vector is

Z = [Re(Z1,1), Im(Z1,2)︸ ︷︷ ︸
Band 1

, · · · ,Re(ZK ,1), Im(ZK ,N)︸ ︷︷ ︸
Band K

]T

Uncoordinated: interfering devices independently transmit on band
k ∈ B, with probability p > 0.

p = 1, sub-Gaussian α-stable vector

p < 1, Bands for each node transmitting on partially overlap.
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The General Case: Difficulties
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Observation: The sub-Gaussian α-stable model does not fit for
p � 1.
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Copula Models

Problem: We need an alternative statistical model.

A general way of obtaining multivariate statistical models is via copula
theory.

For any multivariate distribution, the distribution can be written as:

F (x1, . . . , xn) =
n∏

i=1

F (xi ),

f (x1, . . . , xn) =
n∏

i=1

f (xi ),

if xi , i = 1, · · · , n are independent.
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Copula Models

Problem: We need an alternative statistical model.

A general way of obtaining multivariate statistical models is via copula
theory.

For any multivariate distribution, the distribution can be written as:

F (x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)),

where C : [0, 1]n → [0, 1] is called a Copula function.
The probability density function isd

f (x1, . . . , xn) = c(F1(x1), . . . ,Fn(xn))︸ ︷︷ ︸
Dependence

n∏
i=1

f (xi )︸ ︷︷ ︸
Indepedent

,
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t-Copula Models

Not all copula models work equally well.

We would also like parameter estimation and simulation to have low
complexity.

One option satisfying these criteria is the t-copula

C t
v ,Σ(u) = Fv ,Σ(F−1

v (u1), . . . ,F−1
v (un))),

where

Fv (x) is the CDF of t distribution at x

and Fv ,Σ(x) is the joint CDF of multivariate t distribution at x.
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The General Case: t-Copula Interference Models

Using the t-copula, we can obtain a new interference model.

Let H1, . . . ,Hn be the CDFs of stable distributions corresponding to the
interference on each subcarrier.

The distribution of Z is then approximated by the t-copula interference
model

FZ(x) ≈ C t
v ,Σ(H1(x1), . . . ,Hn(xn)).
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The General Case: t-Copula Interference Models
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Coping with Light Loads

In the lightly loaded case (p → 0), the t-copula model does not fit well.

Observation:

Probability each interfering node transmitting on over two bands ≈ 0.

No overlaps with high probability.

By independent thinning theorem for PPPs, interference on any pair
of bands is approximately independent.

This also explains why the t-copula model does not fit.

Degree of freedom parameter ν in C t
ν,Σ varies significantly between

different pairs of bands.
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Coping with Light Loads: A New Model

In the lightly loaded scenario (p ≈ 0) a good approximation is the
independent sub-Gaussian α-stable model:

Z = [Re(Z1,1), Im(Z1,2)︸ ︷︷ ︸
Band 1

· · ·Re(ZK ,1), Im(ZK ,2)︸ ︷︷ ︸
Band K

]T

where each band is an independent 2-dimensional sub-Gaussian α-stable
random vector.
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Coping with Light Loads: Validation
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Summary of the Model

We now have a good characterization of the interference random vector

Z = [Re(Z1,1), Im(Z1,2)︸ ︷︷ ︸
Band 1

· · ·Re(ZK ,1), Im(ZK ,2)︸ ︷︷ ︸
Band K

]T

When the network is heavily loaded (p = 1) the interference random
vector is sub-Gaussian α-stable.

When the network is moderately loaded (0� p < 1), a good
approximation is the t-copula model with α-stable marginals.

When the network is lightly loaded (p ≈ 0), a good approximation is the
independent model (each band is sub-Gaussian α-stable).
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Summary of the Model
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Conclusions

Interference is a key bottleneck in the design of IoT communication
systems.

Due to short packets, interferers can change rapidly compared with
classical models.

We have studied the interference statistics of a Poisson spatial field of
interferers with multiple bands.

By using new tools from copula theory, we have obtained tractable
approximations for the interference statistics.

This forms the basis for improved design of IoT networks.
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