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Abstract—The straggler effect is the main bottleneck for
Federated Learning (FL), where the performance of training is
degraded by the slowest member. Another significant problem is
unreliable communication, which somehow has been neglected in
previous studies. That is, the transmission of local models is not
successful every time. In this paper, we find that the problems
of straggler effect and unreliable communication are implicitly
caused by time divergence of User Equipments (UEs) in each
training round. Based on this, we propose our solutions for these
two problems and show that our solutions can be merged into a
general one: the problem of the straggler effect and unreliable
communication can be solved with a simple UE selection method.
This method consists of two steps: First, we cluster UEs into sev-
eral groups based on UEs’ physical parameters or performance
metrics; Second, in each training round, only UEs from the same
group are chosen for FL operation. Full explanations are given
why the time divergence is statistically reduced, and therefore it
can mitigate the aforementioned two problems. Our solutions
are further illustrated with some examples and validated by
simulations.

Index Terms—federated learning, straggler effect, unreliable
communication, time divergence, re-transmission

I. INTRODUCTION

Federated Learning (FL) was first proposed by McMahan
in 2016 [1], where models are trained based on the local data
at User Equipments (UEs). In this way, privacy is protected
and computation burden at the server or base station (BS) is
released. However, it faces two challenges:

1) Straggler effect: Due to the heterogeneity of computa-
tion and communication, some UEs may fail to complete their
local training and upload their models in time, which become
“stragglers” and hinder the whole FL training process.

To mitigate this problem, various solutions are put forward.
Some works focus on sampling and try to avoid selecting
stragglers for FL participation [2]–[4]. However, this leads
to the global model biased towards the model of “fast”
UEs. Other methods propose computation offloading. That
is, offload the data on stragglers to other UEs [5], [6] or
edge servers [7], [8] to reduce the computation time. But this
requires a trusting environment and may have privacy issues.

2) Unreliable communication: Most works assume reli-
able communication where models are perfectly received at
BS. However, transmission errors may happen. Local models
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will be abandoned from the global aggregation if they are not
successfully received. As a result, the global model will be
biased towards UE models with good channel quality.

To address this problem, [9] first studies the impact of
packet error and derive a closed-form expression. Then an
FL algorithm suitable for unreliable and resource-constrained
wireless systems is proposed in [10]. In [11], [12], FL conver-
gence is analyzed under transmission outage and quantization
errors. The simplest way dealing with unreliable commu-
nication is the re-transmission strategy: [10] considers re-
transmission for each device, and [12] employs re-transmission
when all devices encounter outage.

In this paper, we aim to propose a general solution for the
problems of straggler effect and unreliable communication.
Inspired by [13], we find out the essence of straggler effect is
the problem of time divergence. Straggler effect can be miti-
gated as long as the time divergence is reduced in each training
round. Based on this observation, we propose our first solution.
The idea is essentially to put UEs with the similar upload
time or communication time in the same training round, which
will reduce the time divergence statistically. As for unreliable
communication, the re-transmission strategy is considered. To
the best of our knowledge, no one ever studies the impact
of prolonged time on FL performance due to re-transmission.
We give a clear analysis that unreliable communication with
re-transmission can be treated as a straggler problem. On that
account, similar solutions are given. Moreover, we do some
simulations to validate our solutions. In the end, we merge the
solutions for straggler effect and unreliable communication
into a general one, and discuss its extensions and potential
impact on the 3rd Generation Partnership Project (3GPP)
standards.

The rest of this paper is organized as follows. Section II
gives the system model. In Section III and Section IV,
solutions for straggler effect and unreliable communication
are provided along with the analysis, respectively. Simulation
results are presented to validate our solutions in section V.
In Section VI, a general solution is given, and its impact on
3GPP standards is further discussed. Conclusions are drawn
in Section VII.



Fig. 1. Federated averaging learning process.

II. SYSTEM MODEL

A. Federated learning model

In this work, we consider a federated learning process
where BS or server tries to solve the following distributed
optimization problem:

min F (w) =

N∑
k=1

ukFk(w), (1)

where w is the model parameters to be learned. N is the
number of UEs. uk is the weight of UE#k, uk ≥ 0 and∑N

k=1 uk = 1. Fk(w) is the local loss function. Let Dk

denotes the local dataset on UE#k, and we have

Fk(w) =
1

nk

nk∑
j=1

ℓ(w;xj
k, y

j
k), k = 1, 2, · · · , N, (2)

where nk = |Dk| is the number of samples in Dk. (xj
k, y

j
k) is

the j-th sample of UE#k. ℓ(w;xj
k, y

j
k) is the loss function on

(xj
k, y

j
k).

We employ the FedAvg algorithm [1]. In the r-th FL training
round, FedAvg executes the following steps (see Fig. 1):

1) UE selection and broadcasting: BS first selects a
candidate set Sr out of M UEs, where |Sr| = N 1 and N ≤ M .
Each element of Sr represents the index of selected UE. It then
broadcasts the global model wr−1 to UEs in Sr.

2) Local model updating: Each UE#k ∈ Sr updates the
local model as follows:

w̄0,r
k = wr−1

w̄j,r
k = w̄j−1,r

k − η ▽ Fk(w̄
j−1,r
k ), j = 1, ..., τ,

wr
k = w̄E,r

k ,

(3)

where η > 0 is the learning rate. τ is the number of iterations.
wr is the updated global model in r-th training round, and w0

represents the initialized model at the beginning. w̄j,r
k is the

updated model parameters in the j-th iteration of r-th round
at UE#k. ▽Fk(w̄

j−1,r
k ) is the gradient of UE#k at w̄j−1,r

k . wr
k

is the model parameter to be uploaded in r-th round.
3) Aggregation: The selected UEs upload their local mod-

els wr
k to BS, and BS aggregates all received local models to

generate a new global model based on FedAvg [1]:

wr =
1∑

k∈Sr
nk

∑
k∈Sr

nkw
r
k. (4)

1N is usually set as the number of resource blocks (RBs) for communica-
tion in the system (one RB for one UE at most), i.e., the maximum number
of UEs that BS can associate with.

B. Communication and computation time

We characterize the communication and computation time
as follows:

1) Uplink transmission time: Let Tup
k,r denote the time

of UE#k transmitting its local model in the uplink at r-th
training round, and

Tup
k,r =

Smodel

Rk,r
, (5)

where Smodel is the size of ML model parameters, and Rk,r

is the uplink transmission rate.
2) Communication time: The total communication time is

given by
T comm
k,r = Lk · Tup

k,r, (6)

where Lk is the number of transmissions.
We neglect the downlink transmission time for the following

reasons: 1). BS transmit power is sufficiently large; 2). Global
model is broadcast and could occupy the whole bandwidth.

3) Computation time: To capture the randomness of com-
putation time, we employ the shifted exponential distribution
[3], [14]:

P [tcomp
k,r <t]=

{
1− exp (− µk

τuk
(t−akτuk)), t>akτuk

0, otherwise
, (7)

where ai > 0 is the maximum computation capability and
µi > 0 is the fluctuation of the computation capability. And we
assume these parameters remain constant during the training
process.

The computation time at BS is not considered as the BS has
high computational power and only performs low-complexity
model aggregation.

4) Upload time: The upload time is defined as the sum of
computation time and communication time:

Tupload
k,r = T comp

k,r + T comm
k,r . (8)

C. Communication model

In uplink, the channel capacity of UE#k is given by

Ck = bk log2

(
1 +

Pk|gk|2

bkN0

)
, (9)

where bk denotes the bandwidth allocated for UE#k with∑N
k=1 bk = B, and B is the total bandwidth. Pk is the transmit

power at UE#k. gk is the channel coefficient. N0 is the noise
power spectral density.

We further assume an equal bandwidth allocation within N
UEs. Each UE has the same transmit power, and

|gk|2 = |hk|2d−α
k , (10)

where |hk|2 ∼ Exp(1) is the Rayleigh fading. dk is the
distance between UE and BS, and α is the path-loss coefficient.

Then we have

Ck = b log2

(
1 +

Pk|hk|2d−α
k

bN0

)
, (11)

where b = B/N .
According to the channel coding theorem [15], given the

target rate Rk, when the channel capacity Ck is lower than
the target rate Rk, the outage occurs. That is, BS can’t decode



the received local model correctly. Therefore, the outage
probability is denoted as

qk = Pr(Ck ≤ Rk). (12)

Then, the success probability of a single transmission is

pk = 1− qk. (13)

To increase reliability, re-transmission schemes may be
considered, which will be further discussed in Section IV.

III. STRAGGLER EFFECT & OUR SOLUTION

In this section, we offer our solutions for straggler effect
and give our analysis of how it works.

A. Straggler effect: intuition on time divergence

Observe that if all UEs take the same time, there will be
no stragglers. Mathematically, it is that the time divergence
between all UEs equals zero. In intuition, the straggler does
less harm to the “slow” UEs as they have less “waiting time”
compared with “fast” ones. Therefore, if we put the straggler
and slow UEs in the same training round, the negative effect
of straggler becomes less severe. By doing so, we implicitly
reduce the time divergence between UEs.

Essentially, we can mitigate straggler effect by reducing the
time divergence between UEs. And we give our solution on
how to do this in the next subsection.

B. Solution: clustering based on upload time or communica-
tion time

Assume all UEs’ transmissions are successful, and we have

Solution#1(Clustering based on upload time):
1). We cluster the UEs into K groups based on the upload
time where UEs with same or similar upload time are put into
the same group; 2). In each training round, only UEs from the
same group are selected for FL operation.

An example is given in Fig. 2. There are 6 UEs, and only 3
UEs can be chosen in each training round. In random UE
selection scheme, UE#3 becomes the straggler in the first
round, and so do UE#2 and UE#6 in the second round. To
alleviate straggler effect, we employ Solution#1 by putting the
fast ones (UE#1, UE#4, UE#5) in the first round and the slow
ones (UE#2, UE#3, UE#6) in the second round. It is evident
that our solution outperforms the random selection method in
terms of execution time (t′1 + t′2 < t1 + t2). Since all UEs are
chosen only one time for training in the two rounds, fairness
and accuracy are also guaranteed.

The philosophy of Solution#1 is that the divergence of
upload time is, as much as possible, minimized in each training
round. It is based on the implicit condition that the upload time
Tupload
k,r stays the same for all training rounds. However, such

conditions can be easily released.
In most of the time, the time divergence is a random variable

depending on the selected UEs in each training round. If
the divergence of upload time is reduced in statistics, the
performance will also be improved over a sufficient number
of training rounds. Therefore, we could exploit the statistical
value of upload time for clustering, e.g., the mean value.

Fig. 2. Comparison of random UE selection and Solution#1.

Solution#2(Clustering based on communication time):
Replace upload time in Solution#1 with communication time,
we get this solution.

According to (8), upload time is the summation of computa-
tion time and communication time. In general, the computation
time is decided by UEs’ computation capability, data size,
etc. On the other hand, the communication time depends
on channel quality, transmit power, number of antennas, etc.
Hence, one can regard them as two independent variables.
And the divergence of upload time becomes the summation
of the divergence of computation time and the divergence
of communication time. As a result, we can reduce the
divergence of upload time by minimizing the divergence of
communication time.

The communication time may vary in each round due to the
uncertainty of channel condition and UE mobility. Similar to
Solution#1, Solution#2 may be adapted by exploiting the mean
value of communication time or maybe uplink transmission
rate, etc.

C. Implementation in practice

In practice, computation time and communication time are
unknown but can be estimated beforehand: computation time
can be estimated with UE’s CPU, CPU occupancy, data size,
etc. Communication time can be estimated with the UE’s
location, transmit power, etc. In addition, the experience or
empirical results could be exploited as well. That is, before the
FL starts, we may let UEs run some computation or transmit
a few packets to BS for estimation.

The number of groups K is usually given as

K =

⌈
M

N

⌉
, (14)

where ⌈·⌉ is the ceiling function.

IV. UNRELIABLE COMMUNICATION

In this section, we offer our solutions for unreliable com-
munication and give our analysis of how it works.

A. Unreliable communication: re-transmission strategy

In practice, local models will be abandoned from the global
aggregation if they are not successfully received. Thus, (4) is
rephrased as



wr =
1∑

k∈Sr
aknk

∑
k∈Sr

aknkw
r
k. (15)

where ak = 1 if the local model of UE#k is successfully
received, otherwise ak = 0. And ak ∼ B(1, pk), where pk is
given in (12).

For UE#k with a bad channel quality, pk is small, and ak
is more likely to be zero. As a consequence, the aggregated
global model will be biased towards the models of UEs with
good channels. To tackle this issue, we employ the continuous
re-transmission strategy:

Continuous re-transmission strategy: When transmission out-
age occurs, BS requires UEs that fail to upload their model
to re-transmit till it is received successfully, or the maximum
number of transmissions Lmax is reached.

We assume transmission rate is same and remains a con-
stant for all UEs, denoted as R. And thus, so is the uplink
transmission time for one transmission Tup. Then we have

Tupload
k,r = T comp

k,r + Lk · Tup (16)

To the fullest extent, this strategy ensures that BS suc-
cessfully receives the local model of all selected UEs for
global aggregation. However, UEs with poor channel quality
tend to have more re-transmissions, which prolongs the whole
communication time, and thus the upload time in (16).

An example is given in Fig. 3, where we assume 8 UEs
with Group#1={UE#1, UE#2, UE#3, UE#4} of good channel
quality and Group#2={UE#5, UE#6, UE#7, UE#8} of bad
channel quality. In most times, UEs from Group#2 have more
transmissions, prolonging the communication time and upload
time in each round. These “bad” UEs are more inclined
to become stragglers due to the increased duration of re-
transmission. What is more, the prolonged upload time of
“bad” UEs increases the time divergence between them and
“good” ones.

Accordingly, we could solve this problem with UE selection
by clustering in the same manner as dealing with the straggler
problem.

B. Solution: clustering based on NR measurements (RSRP,
RSRQ, SINR, etc)

Solution#3(Clustering based on NR measurements):
Replace upload time in Solution#1 with NR measurements
(e.g. SNR, RSRP, RSRQ, etc.), we get this solution.

Given pk in (13), the probability that local model of UE#k
is successfully received at l-th transmission is:

P (Lk = l) = pk(1− pk)
l−1. (17)

Thus, the average number of transmissions for UE#k is

L̄k =

Lmax∑
l=1

l · P (Lk = l)

= pk

[
1−(1−pk)

Lmax−1

p2k
− Lmax

(1−pk)
Lmax

pk

]
. (18)

Fig. 3. Random UE selection under the continuous re-transmission strategy.

When Lmax is large enough, i.e., Lmax → ∞, we have

L̄k = 1/pk. (19)

And the average communication time of UE#k is

T̄ comm
k =

Tuplink

pk
=

Smodel

R
· 1

pk
, (20)

where pk is different among UEs due to the variety of channel
conditions.

As the average communication time depends on pk, we can
solve this “implicit straggler problem” by clustering based on
pk or qk. But the estimation of pk or qk requires multiple
transmissions before FL process.

According to 3GPP [16], The 5G NR measurements are
good metrics that represent the channel condition or out-
age probability, e.g., Signal-to-Interference-plus-Noise Ratio
(SINR), Reference Signal Received Power (RSRP), Reference
Signal Received Quality (RSRQ), etc.

The channel capacity is

Ck = bklog2(1 + SINR). (21)

Therefore, the outage probability P (Ck < R) is equivalent to
SINR = S

I+N < γ, where S is the received signal power, and
S can be measured with the RSRP or RSRQ. For this reason,
we can also consider clustering based on NR measurements.

C. Implementation in practice

The benefits of Solution#3 are that 5G NR measurements
have been standardized as SS-RSRP, CSI-RSRP, SS-RSRQ,
CSI-RSRQ, SS-SINR, CSI-SINR, etc [16], which do not need
further estimation or execution process.

V. SIMULATION RESULTS

We refer to and use most of the setup in [17]. Assume
we have M = 100 UEs uniformly distributed over the cell
with radius Dmax = 600 m. In each round, only N = 10
UEs can be chosen. The bandwidth is B = 20 MHz. With
equal allocation, the bandwidth for each UE is b = B

N =
2 MHz. (11) is employed. Furthermore, we assume the channel
capacity follows (11). The path-loss exponent and noise power
spectrum are set α = 3.76 and N0 = −114 dBm, respectively.
|hk|2 ∼ exp(1) is the Rayleigh fading. Noise-limited scenarios
are considered, i.e., the interference can be ignored.
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Fig. 4. Straggler effect: comparison of four UE selection methods on IID
dataset — random selection, round robin, clustering based on upload time
and clustering based on communication time.
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Fig. 5. Straggler effect: comparison of four UE selection methods on non-IID
dataset — random selection, round robin, clustering based on upload time and
clustering based on communication time.

The multilayer perceptron (MLP) with a single hidden layer
of 64 nodes is chosen as the training model, and ReLU
activation is used. Hence the model size is Smodel = 0.2 MB.
Let a = 0.5 ms/sample and µ = 1

a in (7).
As for data partitioning, we employ the method from [1]:
• IID: The MNIST 60,000 training images are partitioned

into 100 datasets with each of 600 samples. Then each
UE is allocated with one dataset.

• Non-IID: The 60,000 training images are sorted by digit
label and divided into 200 shards of size 300. Then we
assign each of 100 clients 2 shards.

A. Simulation for straggler effect

We assume perfect CSI, and UE can adapt its rate to achieve
zero-error transmission. UEs’ location is assumed to be fixed.
The transmit power for each UE is set the same: P = 10 dBm.
Then, the transmission rate of UE#k at r-th round is

Rk,r = b log2

(
1 +

P |hk,r|2d−α
k

bN0

)
, (22)

where |hk,r|2 is the value of small-scale fading at r-th round.
Then communication time Tup

k,r can be computed with (5).
The computation time is sampled following (7).

Fig. 4 gives the simulation results under IID data, where
four methods are considered:
• Random: In each round, 10 UEs are randomly selected;
• Round robin [18]: The M UEs are randomly divided into
N groups, each with K = M

N UEs. Each group joins FL
consecutively. This process reinitializes every K training
rounds. That is, UEs will be regrouped after all of them
have been chosen one time.

• Tupload: Clustering based on upload time;
• T comm: Clustering based on communication time.
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Fig. 6. Straggler effect: PDF of wall-clock time for performing 200 training
rounds under four UE selection methods: random selection, round robin,
clustering based on upload time and clustering based on communication time.
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Fig. 7. Unreliable communication: comparison of three UE selection methods
on IID dataset — random selection, round robin, clustering based on SNR.

As is shown in Fig. 4(a), there is little difference on
accuracy in terms of training round. However, as for wall-
clock time, the method clustering based on upload time takes
2.13s and the method on communication time takes 2.46s to
finish 200 training rounds, which are less than the other two
(approximately 3.4s). Similar results are also shown in Fig. 5
with the non-IID data.

To further illustrate the performance of our methods in
statistics, Fig. 6 gives the probability density function (PDF) of
wall-clock time for performing 200 training rounds, which is
estimated from 500 Monte Carlo simulations. It is obvious that
our methods are better than the other two, which is consistent
with Fig. 4 and Fig. 5. In addition, the method clustering
based on upload time is better than that clustering based on
communication time because the computation time is also
accounted for reducing the time divergence.

B. Simulation for unreliable communication

In this subsection, we assume all UEs transmit at a fixed
target rate R = 15 MB/s, and transmission error may
occur. The transmit power of each UE may be different.
For ease of analysis, we uniformly choose a value from
[7, 10, 13, 16, 19] dBm for each UE as its transmit power.
According to (11) and (12), the SNR and outage probability
will vary between UEs.

Similar to Section V-A, three methods are considered:
random, round robin, and clustering based on SNR (denoted
as SNR cluster). As is shown in Fig. 7, Fig. 8 and Fig. 9, our
method of clustering outperforms the other two in terms of
wall-clock time.
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Fig. 8. Unreliable communication: comparison of three UE selection methods
on non-IID dataset — random selection, round robin and clustering based on
SNR.
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Fig. 9. Unreliable communication: PDF of wall-clock time for performing
200 training rounds under random selection, round robin and clustering based
on SNR.

VI. A GENERAL SOLUTION AND ITS IMPACT ON 3GPP

The solutions in Section III and Section IV can be merged
into a general one:

General Solution(Clustering based on performance metrics
or physical parameters):
1). We cluster the UEs into K groups based on the Q where
UEs with same or similar Q are put into the same group; 2).
In each training round, only UEs from the same group are
selected for FL operation.

Q could be performance metrics introduced in Section III and
Section IV, i.e., computation time, communication time, trans-
mission rate, and NR measurement. It could also be extended
to include other physical parameters that impact the time
divergence directly or indirectly. For example, the distance
to BS for each UE: the larger distance, the lower transmission
rate and smaller communication time, or larger number of re-
transmissions. These existing or future performance metrics
or physical parameters could be included in 3GPP for FL UE
selection.

VII. CONCLUSION

In this paper, we provide our solutions for two problems:
straggler effect and unreliable communication, and validate
them with illustration, analysis, and simulations. For straggler
effect, our clustering method aims to reduce the time diver-
gence in each training round. For unreliable communication,
it can be converted into a “straggler” problem and solved with
clustering, because prolonged time caused by retransmission
leads to an increase of time divergence, as well. These

solutions are further merged into a general one which could
have a further impact on 3GPP standards in FL.
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